

Hearing Loss Innovation: Expanding Frontiers in Protection & Restoration

Symposium

April 26, 2025

Hearing Loss Innovation: Expanding Frontiers in Protection & Restoration April 26, 2025 - 11:30 am to 12:15 pm (UTC+1)

Moderator: Nawal Ouzren, Chief Executive Officer, Sensorion

- Protecting Hair Cells, Preserving Hearing: The Potential of SENS-401
 Prof. Yann Nguyen, Department of Otolaryngology-Head & Neck Surgery, Pitié-Salpêtrière Hospital, Paris, France
- From Bench to Bedside: The Journey of GJB2 & OTOF Gene Therapies for Children with Severe to Profound Hearing Loss
 - Advancing Gene Therapy for OTOF-Related Hearing Loss in Young Children
 Prof. Natalie Loundon, Pediatric Department of Otolaryngology-Head & Neck Surgery, Necker Enfants Malades Hospital, Paris, France
 - Developing Novel Gene Therapy for Hereditary Hearing Loss in Patients with GJB2 Mutations Laurent Désiré, PhD, Head of Preclinical Development, Sensorion
- Q&A Session & Conclusion: Nawal Ouzren, Chief Executive Officer, Sensorion

Sensorion

Protecting Hair Cells, Preserving Hearing: The Potential of SENS-401

Yann Nguyen

AP-HP, GHU « Sorbonne Université » ; site Pitié Salpêtrière ; DMU « ChIR » Chirurgie Innovation et recherche, Service ORL, Paris. **IHU Institut Reconnect,** équipe TI2S « Technologies innovantes et thérapies translationnelles de la surdité ».

SENS-401 AS A POTENTIAL OTOPROTECTIVE AGENT

SENS-401 Acts as A Specific Antioxydant Agent in the Cochlea Through A Dual Mechanism

	SENS-401 (® Azasetron)	Disr	upted Ca ²⁺	upted Ca ²⁺	upted Ca ²⁺	upted Ca ²⁺
Therapeutic Class	Selective 5-HT3 receptor antagonist	Homeos Excitoto	stasis xicity	tasis xicity	tasis Calcineurin xicity Activation	stasis Calcineurin xicity Activation
Molecular Structure & Weight	C ₂₃ H ₂₆ CIN ₃ O ₆ S 507.98	Neuro Inflammati	ion	ion	ion	
Biodistribution	Longer and higher inner ear tissue exposure compared to other setrons					
PK Interactions	No impact on cisplatin activity <i>in vivo</i> (animal models) & <i>in vitro</i> (cells lines) Not a substrate of CYP450					
Half-Life Ranges	12 to 14h					
Route of Administration	Oral, BID					
MOA	Selective 5-HT3 receptor antagonist & calcineurin antagonist					
Animal Model	Significantly reduces ciplatin hearing loss & enhances OHC survival in rats					

SENS-401 AS A POTENTIAL OTOPROTECTIVE AGENT

SENS-401 Acts as A Specific Antioxydant Agent in the Cochlea Through A Dual Mechanism

Petremann et al. Otol Neurotol: Oral Administration of Clinical Stage Drug Candidate SENS-401 Effectively Reduces Cisplatin-induced Hearing Loss in Rats. 2017. Data on file.

SENS-401 AS A POTENTIAL OTOPROTECTIVE AGENT

SENS-401 Acts as A Specific Antioxydant Agent in the Cochlea Through A Dual Mechanism

	SENS-401 (® Azasetron)	Disrupted Ca ²⁺		Oxydativa Strace
Therapeutic Class	Selective 5-HT3 receptor antagonist	Homeostasis Excitotoxicity	Calcineurin Activation	& Coll Doath
Molecular Structure & Weight	C ₂₃ H ₂₆ CIN ₃ O ₆ S 507.98	Neuro Inflammation		Gen Death
Biodistribution	Longer and higher inner ear tissue exposure compared to other setrons			Structural degeneration
PK Interactions	No impact on cisplatin activity <i>in vivo</i> (animal models) & <i>in vitro</i> (cells lines) Not a substrate of CYP450	Ca ²⁺ 5HT3R + Ca2+		
Half-Life Ranges	12 to 14h	5HT3R antagonist		
Route of Administration	Oral, BID			
MOA	Selective 5-HT3 receptor antagonist & calcineurin antagonist		Caln pathway inhibition	₀ ♥ ő Apoptosis
Animal Model	Significantly reduces ciplatin hearing loss & enhances OHC survival in rats	SENS-401		

Petremann et al. Otol Neurotol: Oral Administration of Clinical Stage Drug Candidate SENS-401 Effectively Reduces Cisplatin-induced Hearing Loss in Rats. 2017. Data on file.

CISPLATIN-INDUCED OTOTOXICITY MECHANISM OF ACTION

Cisplatin-Induced Cochlear Inflammation & Oxydative Stress

Cisplatin-induced inflammation & oxydative stress lead to hair cell death

Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. International Journal of Molecular Sciences. 2022. Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci. 2023. Winston JT Tan et al. Molecular Characteristics of Cisplatin-Induced Ototoxicity and therapeutic Interventions. Int. J. Mol. Sci. 2023,24:16545.

NOTOXIS

CISPLATIN-INDUCED OTOTOXICITY MECHANISM OF ACTION

Cisplatin-Induced Cochlear Inflammation & Oxydative Stress

Cisplatin-induced inflammation & oxydative stress lead to hair cell death

Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. International Journal of Molecular Sciences. 2022. Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci. 2023. Winston JT Tan et al. Molecular Characteristics of Cisplatin-Induced Ototoxicity and therapeutic Interventions. Int. J. Mol. Sci. 2023,24:16545.

NOTOXIS

A Phase IIa, Multicenter, Randomized, Controlled, Open-label Study to Evaluate the Efficacy of SENS-401 to Prevent the Ototoxicity Induced by Cisplatin in Adult Subjects with a Neoplastic Disease

A Phase IIa, Multicenter, Randomized, Controlled, Open-label Study to Evaluate the Efficacy of SENS-401 to Prevent the Ototoxicity Induced by Cisplatin in Adult Subjects with a Neoplastic Disease

NOTOXIS

Preliminary analysis on 16 patients (4 weeks after last cisplatin dose)

Clinicaltrials.gov ID: NCT05628233- Protocol SENS-401-202 - EudraCT number : 2021-002705-10

PATIENT CHARACTERISTICS

Demographic Characteristics at Baseline

Demographic Data		SENS-401 Group (n=7)	Control Group (n=9)	Total Patients (n=16)
Gender	Male (n)	7	7	14 (87.5%)
	Female (n)	0	2	2 (12.5%)
Mean Age (years)		57.3	56.1	56.6

(Extraction date 31 July 2024)

Mainly urological and head & neck cancers, with a similar distribution between the two groups

Majority of male, representing 88% of the total population Mean age is comparable between the 2 groups

Clinicaltrials.gov ID: NCT05628233- Protocol SENS-401-202 -EudraCT number : 2021-002705-10

PATIENT CHARACTERISTICS

Demographic Characteristics at Baseline & Cisplatin Exposure

Demographic Data		SENS-401 Group (n=7)	Control Group (n=9)	Total Patients (n=16)	Group	n	Average Cis. Cumulative Dose (mg/m²)	Number of Cycles
Gender Female (r	Male (n)	7	7	14 (87.5%)	Control	Q	305.6	3 3
	Female (n)	0	2	2 (12.5%)			000.0	0.0
Mean Age (years)		57.3	56.1	56.6	SENS-401	7	342.2	4.0

(Extraction date 31 July 2024)

Mainly urological and head & neck cancers, with a similar distribution between the two groups

Clinicaltrials.gov ID: NCT05628233- Protocol SENS-401-202 –EudraCT number : 2021-002705-10

PATIENT CHARACTERISTICS

Demographic Characteristics at Baseline & Cisplatin Exposure

Demographic Data		SENS-401 Group (n=7)	Control Group (n=9)	Total Patients (n=16)	Group	n	Average Cis. Cumulative Dose (mg/m²)	Number of Cycles
Gondor	Male (n)	7	7	14 (87.5%)	Control	Q	305.6	3 3
Gender	Female (n) 0 2 2 (12.5%)	Control	5	000.0	0.0			
Mean Age (years)		57.3	56.1	56.6	SENS-401	7	342.2	4.0

(Extraction date 31 July 2024)

Mainly urological and head & neck cancers, with a similar distribution between the two groups

Higher doses of cisplatin in the SENS-401 group compared to control

Clinicaltrials.gov ID: NCT05628233- Protocol SENS-401-202 - EudraCT number : 2021-002705-10

Maximum Change From Baseline in PTA 4 Weeks After the Last Cisplatin Dose

Cumulative dose of cisplatin is a key factor of ototoxicity severity

* frequencies within the 0.5-12.5 KHz range

Clinicaltrials.gov ID: NCT05628233- Protocol SENS-401-202 -EudraCT number : 2021-002705-10

Maximum Change From Baseline In PTA 4 Weeks After the Last Cisplatin Dose (Primary Endpoint)

Mean PTA change is similar between the SENS-401 and control group However, the cisplatin exposure levels were different

* frequencies within the 0.5-12.5 KHz range

Clinicaltrials.gov ID: NCT05628233- Protocol SENS-401-202 - EudraCT number : 2021-002705-10

NOTOXIS

CONCLUSIONS

- Cumulative dose of cisplatin is a key factor of ototoxicity severity
- Based on preliminary data, no significant difference observed on ototoxicity measured by PTA change or CTCAE grading, however SENS-401 treated group received higher cumulative dose of cisplatin compared to control
- Patients with higher exposure to cisplatin may benefit the most from SENS-401's otoprotective effect
- Good safety profile of SENS-401 is confirmed, with the drug being administered for a duration of up to 23 weeks
- Additional analysis will be conducted with more patients at the end of the study

VARIOUS MECHANISMS RESULT IN RESIDUAL HEARING LOSS

- Mechanical disrupture of intracochlear structures (basilar membrane, spiral ligament, modiolar wall, spiral osseous lamina)
- Inflammatory process (fibrosis in perilymphatic space) and secondary apoptosis
- Disturbance of fluid balance (endolymphatic or perilymphatic)
- Acute or chronic bacterial infection
- Cochlear mechanism dysfunction

Mechanical disrupture of intracochlear structures

Inflammatory process and secondary apoptosis

Study Design & Objectives A Phase 2a, Multicenter, Randomized, Controlled, Open-label Study to Evaluate the Presence of SENS-401 in the Perilymph after 7 days of Repeated Oral Administration in Adult Participants Scheduled for Cochlear Implantation **SCREENING PERIOD EVALUATION PERIOD** 6 weeks W0 8 weeks W-6 W-1 W6 W14 Randomization End of treatment D105 Start of treatment D49 **D1 D**8 ■ **Adults** ≥18 yrs Arm A SENS-401 Arm: SENS-401 43.5mg b.i.d n=18 Residual Hearing Follow-up (≥80 dB at 500 Hz) Arm B **Control Arm** n=10 Cochlear Implant Indication with Cochlear's Slim BASELINE **EFFICACY** COCHLEAR **EFFICACY** Straight Electrode Audiometry Audiometry IMPLANTATION Audiometry (CI 622) **Primary Endpoint** Secondary Endpoints (Week 6 & 14 post CI) SENS-401 in PTA change from baseline at 250,500 &750 Hz perilymph 3 frequency average PTA change from baseline (250-500-750 Hz) Secondary Endpoint SENS-401 in Exclusion: Moderate plasma to severe renal impairment (creatinine **Exploratory Endpoints** clearance ≤60 ml/min) Hearing preservation at week 6 & week 14 post-CI EcochG to assess basilar membrane impairment and impact on PTA

Clinicaltrials.gov ID: NCT05258773 - Protocol SENS-401-203 -EudraCT Number - 2021-006615-28.

Patient Characteristics at Baseline

		Treated Group (n=17)	Control Group (n=10)
Aç	ge (mean)		
Gender (n) (%)	Female	11 (65%)	6 (60%)
	Male	6 (35%)	4 (40%)
Mean PTA Hearing Threshold (dB HL) at 500 Hz		67	61

Cochlear implant indications were genetic/hereditary (n=5, 18%), infection related (n=2, 7%), noise exposure (n=3, 11%), other diseases including autoimmune, neuropathy, Ménière's disease (n=3, 11%) and 14.5% of unknow causes (including age-related)

Patient baseline characteristics are well-balanced across the two groups

Clinicaltrials.gov ID: NCT05258773 - Protocol SENS-401-203 - EudraCT Number - 2021-006615-28.

PERILYMPH SAMPLING PROTOCOL

Perilymph sampling technique with the courtesy of Pr Steven O'Leary

Cochlear CI622 array insertion (CHU Pitié Salpêtrière, AP-HP)

Primary Endpoint: Presence of SENS-401 in the Perilymph

	Treated with SENS-401 (n=16) n (%)
SENS-401 levels ≤ LLOQ	0
SENS-401 levels > LLOQ	14*(100)

*Among the 16 participants who underwent surgery, 15 have a perilymph samples and 14 samples were analyzable *LLOQ define by a specific method developed for SENS-401

**The sampling times for SENS-401 levels in the perilymph were standardized in relation to the last oral dose of treatment

- SENS-401 presence in 100% of the analyzable perilymph samples & above the lower limit of quantification (LLOQ)
- Ability of SENS-401 to cross labyrinthine barrier demonstrated

Clinicaltrials.gov ID: NCT05258773 - Protocol SENS-401-203 -EudraCT Number - 2021-006615-28.

Secondary Endpoint: PTA Change at Week 6 & 14 Post-Cl

- After 7 weeks of SENS-401 treatment (6 weeks post-CI), reduction in residual hearing loss is consistently better across all frequencies in the SENS-401 treated group
- This protective effect is maintained 8 weeks after SENS-401 discontinuation (14 weeks post-CI)

Clinicaltrials.gov ID: NCT05258773 - Protocol SENS-401-203 - EudraCT Number - 2021-006615-28

Secondary Endpoint: PTA Change at Week 6 & 14 Post-Cl

- Residual hearing loss is lower in patients treated with SENS-401 at 6 weeks post-CI and 8 weeks after SENS-401 discontinuation (14 weeks post-CI)
- Resulting in a preservation of 14dB for the three-frequency average (250-750 Hz)

Clinicaltrials.gov ID: NCT05258773 - Protocol SENS-401-203 -EudraCT Number - 2021-006615-28.

Conclusions

- Primary objective achieved: SENS-401 crosses the labyrinthine barrier and reaches the perilymph fluid
- Clinically relevant reduction of residual hearing loss in SENS-401 treated group compared to the control group at 6 weeks after cochlear implantation
- Complete hearing preservation is exclusively observed in the patients treated with SENS-401 at 6 weeks post-CI
- Eight weeks after discontinuation of SENS-401, the hearing protective effect is maintained
- The 7-week SENS-401 exposure confirmed a favorable safety profile **consistent with other studies**
- These results support the continued clinical development of SENS-401 for hearing preservation in patients who will receive a cochlear implant

Clinicaltrials.gov ID: NCT05258773 - Protocol SENS-401-203 - EudraCT Number - 2021-006615-28.

Hearing Loss Innovation: Expanding Frontiers in Protection & Restoration April 26, 2025 - 11:30 am to 12:15 pm (UTC+1)

Moderator: Nawal Ouzren, Chief Executive Officer, Sensorion

- Protecting Hair Cells, Preserving Hearing: The Potential of SENS-401
 Prof. Yann Nguyen, Department of Otolaryngology-Head & Neck Surgery, Pitié-Salpêtrière Hospital, Paris, France
- From Bench to Bedside: The Journey of GJB2 & OTOF Gene Therapies for Children with Severe to Profound Hearing Loss
 - Advancing Gene Therapy for OTOF-Related Hearing Loss in Young Children
 Prof. Natalie Loundon, Pediatric Department of Otolaryngology-Head & Neck Surgery, Necker Enfants Malades Hospital, Paris, France
 - Developing Novel Gene Therapy for Hereditary Hearing Loss in Patients with GJB2 Mutations Laurent Désiré, PhD, Head of Preclinical Development, Sensorion
- Q&A Session & Conclusion: Nawal Ouzren, Chief Executive Officer, Sensorion

Advancing Gene Therapy for OTOF- Related Hearing Loss in Young Children

Natalie LOUNDON ENT Department Necker Enfants malades Hospital, Paris, France

PASTEUR

Sensorion

Hôpital Necker Enfants malades AP-HP

Audinnove project

Consultant for Sensorion

Sensorion

Gene Therapy in Human

In Vivo or Ex Vivo

- In Vivo: The vector carrying the therapeutic DNA is directly injected into the subject
- Ex Vivo: The cells to be treated are extracted and reinjected once treated (onco-hematology)
- Pathologies treated with GT using Associated Adenovirus (AAV) as vector
 - Beta-thalassemia, Haemophilia
 - AMD, Retinitis
 - Infantile Spinal Atrophy
 - Achondroplasia

PASTEUR

Gene Therapy for the Inner Ear

Omichi et al., Hum Mol Genet., 2019.

- The inner ear is a good target for GT
 - Isolated organ
 - Limited diffusion
 - *Limited off target effect*
 - Surgical routes

The approaches

- Cochleostomy/Round, Oval window/Canalostomy
- Combined routes

Volume

▶ 40-150µl (15 drops)

Associated Adenovirus (AAV)

Vector

- Non-pathogenic
- Low immunogenicity
- ▶ 12 serotypes & combinations → Target cells, tolerance

Virus Particle

Adenoviral Transduction

Auditory Neuropathy Spectrum Disorder

Clinical aspects

- > 2-10% Sensorineural Hearing loss (Berlin et al. 2010)
- Mild to profound hearing loss (Pure Tone Audiometry)
- Poor speech intelligibility rate
- Desynchronized Auditory Brainstem Responses
- Preserved Oto-Acoustic Emissions (30-83%)

Standard care

Hearing aids/Cochlear implants

Etiology

- > Central: Hyperbilirubinemia, mitochondrial
- Nerve: Hereditary Sensory-motor, late onset (10-15 years), abnormal VIIIc

Synapse: Otoferlin (DFNB9), non syndromic & recessive, Incidence: ~1,080/year (USA + EU + Japan)

OTOF

- Otoferlin, DFNB9
- 3-5% profound SNHL
- IHC, Vestibular Cells type 1
- Calcium-dependent fusion synaptic vesicles

DFNB9: Current Candidate for GT Treatment

- Isolated synaptic dysfunction
- Preserved inner ear fine structures
- Relevant mouse model
- Effective GT in mature mice

2019/ S. Safieddine

Wild-type

86~

76~ (dB

71

56~

36 31-

26

SPL) 81~

level 66 61-

intensity 51~ 46~~1 41-1

Click

Sensorion

Audiogene Clinical Trial (Sensorion)

April 2024 (Europe and Australia)

> Clinical trial accepted in Europe (France first center) and Australia

Candidates and study

- > Infants aged 6 to 31 months with DFNB9 confirmed (bi-allelic otoferlin mutation)
- Severe to profound bilateral HL
- No cochlear implant

Injection

- Unilateral intra-cochlear injection
- Round Window (RW)+Oval Window (OW) with specific injection system

Primary Objectives

- Part 1 (escalation): Safety
- Part 2 (expansion): Efficacy

Omichi et al., Hum Mol Genet., 2019.

Audiogene Clinical Trial (Sensorion)

Audiogene, a Phase 1/2 clinical trial in homogenous population of infants and toddlers, aged 6 to 31 months, naive of cochlear implants, to assess safety, tolerability, and efficacy of SENS-501 following unilateral injection into the cochlea

Audiogene Clinical Trial (Sensorion)

Cohort 1 demographics and clinical characteristics of enrolled patients (SENS-501 low dose)

	Patient 1	Patient 2	Patient 3	
Site Location	Sydney Cochlear Implant Centre, Australia	Paris Necker Hospital, France	Sydney Cochlear Implant Centre, Australia	
Age of Dosing (months)	14	11 11		
Cochlear Implant History	None	None	None	
Administration	Right	Left Right		
DPOAE Status at Baseline	Present	Present	Present Present	
Pathogenic OTOF Variant	c.2887C>T p.(Arg963*) / c.2957G>C p.(Arg986Pro) / c.3400C>T p.(Arg1134*)	c.1622G>A p.(Gly541Asp) / Homozygote c.5567G>A c.1768G>T p.(Glu590*) p. (Arg1856Gln)		
Dose Received (vg/ear)	1.5 10E11	1.5 10E11 1.5 10E11		
Surgical Delivery	Uneventful	Uneventful Uneventful		
	forewhon Pole Usterior	Sensor	ion	

AVEN

Audiogene Clinical Trial Status

FIRST COHORT INJECTED	 Patient recruitment as planned: first cohort of 3 infants and toddlers injected in H2 - 2024 In the first 3 patients, good initial safety: No dose-limiting toxicities, no Serious Adverse Events Vestibular function and Otoacoustic Emissions (OAEs) remained unchanged from baseline Surgical administration and procedure well tolerated
	• Efficacy data set being collected
SECOND COHORT RECRUITING	 Data Monitoring Committee provided positive recommendation to move to the second dose Ongoing Natural History Study (OTOCONEX) supports eligible patients' identification

Sensorion

Impact on our Practice

Pediatrician, ENT Specialist, Speech Therapist, Audiologists

Sensorion

38

How does those GT trials impact our practice?

Counselling: Hearing loss due to OTOF mutations

- GT described as an alternative to cochlear implantation in infants and toddlers
- Early parental **counselling**: algorithm rehabilitation program (ENT/Audiologists)

Setting a specific screening program for OTOF

- Hearing tests: New Born hearing screening using ABR
- Genetics: enlarging screening to OTOF mutations

What should we get prepared for in a near future?

Patients with DFNB9

- Babies with profound HL: discuss GT rather than CI
- > Older children/ Adults with congenital profound HL and unilateral CI: wait for future GT indications
- Progressive HL forms: GT could be an alternative to CI

Sensorion

What should we get prepared for in a near future?

Other causes of Hearing loss: possible GT trial in few years from now?

- ►GJB2
- ►USH2
- ▶ STRC

Sensorion

Rehabilitation VS Restoration

Are we here Yet?

Life-changing advances

Hope for natural hearing restoration

Sensorion

Thank you for your attention!

Sensorion

Hearing Loss Innovation: Expanding Frontiers in Protection & Restoration April 26, 2025 - 11:30 am to 12:15 pm (UTC+1)

Moderator: Nawal Ouzren, Chief Executive Officer, Sensorion

- Protecting Hair Cells, Preserving Hearing: The Potential of SENS-401
 Prof. Yann Nguyen, Department of Otolaryngology-Head & Neck Surgery, Pitié-Salpêtrière Hospital, Paris, France
- From Bench to Bedside: The Journey of GJB2 & OTOF Gene Therapies for Children with Severe to Profound Hearing Loss
 - Advancing Gene Therapy for OTOF-Related Hearing Loss in Young Children
 Prof. Natalie Loundon, Pediatric Department of Otolaryngology-Head & Neck Surgery, Necker Enfants Malades Hospital, Paris, France
 - Developing Novel Gene Therapy for Hereditary Hearing Loss in Patients with GJB2 Mutations Laurent Désiré, PhD, Head of Preclinical Development, Sensorion
- Q&A Session & Conclusion: Nawal Ouzren, Chief Executive Officer, Sensorion

Developing Novel Gene Therapy for Hereditary Hearing Loss in Patients with GJB2 Mutations Presentation

Laurent DÉSIRÉ, Ph.D, Head of Preclinical Development, Sensorion

GJB2-GT For DFNB1A

۲

Connexin 26 is Encoded by GJB2 Gene and is Responsible for Tissue Homeostasis

Mutations in the *GJB2* Gene Lead to Deafness Biggest cause of congenital deafness, around 50% of autosomal recessive non syndromic hearing loss cases are thought to result from GJB2 mutations. Connexin 26 and Connexin 30 proteins are the dominating connexins in the cochlea; heteromeric or heterotypic hexamers forming Gap Junctions.

 Gap Junctions are key for the intercellular exchange of molecules (miRNA, glucose, ions, etc.) hence responsible for tissue homeostasis. 1) Hemichannel = connexon
 2) Gap junction

- More than 100 recessive mutations origin Cx26 truncation/ deletion leading to non-syndromic hearing loss and deafness, most are addressable via gene replacement.
- Severity of hearing loss correlates with degree of loss of *GJB2* function.

GJB2 Expression in the Cochlea

Phalloidin Cx26 DAPI

- Supporting cells of the organ of Corti
- Fibrocytes of the spiral limbus and the lateral wall
- Intermediate and basal cells of the stria vascularis
- Not expressed in hair cells

Lead Candidate was Selected to Answer Specific Development Criteria

CRITERIA	LEAD CANDIDATE
Natural and synthetic AAV capsid libraries screening for broad coverage of target cells.	\checkmark
Expression cassette design for high-level of target cells transduction, correct cellular localization.	\checkmark
Avoiding off-target expression (i.e. hair cells): promoter and regulatory sequences design.	\checkmark
Limited off-target tissue biodistribution.	\checkmark
Surgical approach developed and mastered by ENT surgeons.	V

Our Lead Candidate was Designed to Ensure Broad Coverage of Relevant Cochlear Cells While Detargeting Hair Cells

Sensorion's Proprietary GJB2-GT Candidate

- Synthetic AAV capsid with broad tropism for support cells
- Correctly adresses Cx26 at the cell membrane
- Creates functional gap junctions *in vitro* (dye transfer)
- Regulatory sequence Reg S1 to detarget hair cells

Lead Candidate can Deliver Connexin 26 in the Appropriate Target Cells

• No expression in Hair Cells confirmed.

Copyright by Sensorion - 2025 - All Rights Reserved

• No morphological defects observed 3 and 9 weeks after intracochlear administration.

Lead Candidate Prevents Hearing Loss in DFNB1A cKO Mouse Model

Adequate Safety and Biodistribution Profile Including Long-term Local Tolerability in Mice and NHP

Acute toxicity in WT Mice - High dose IV injection

- Study performed in preparation of upcoming GLP-toxicity in mice after IV injection.
- GJB2-GT does not interfere with normal growth and don't elicit elevated transaminase levels 4 and 8 weeks after injection.
- Behavioral evaluation (Functional Observation Battery, exploratory behavior 3 and 7 weeks after injection: no findings.

6-Month Exploratory Safety and Transgene Expression in WT Mice – Intracochlear injection

- No impact on ABR up to 6 months.
- Normal histology maintained.
- Transgene expression persistence.
- Hair cells detargeted.
- Clinical pathology: no findings.

3-Month Exploratory Toxicity and Biodistribution in Non-Human Primate – Intracochlear injection

- GJB2-GT is well tolerated and did not induce any macroscopic/organ weight changes or local/systemic microscopic findings.
- Normal cochlear histology.
- No lab and clinical findings.
- Biodistribution: the vast majority of the vector remains in injected ears, no dissemination observed in gonads, main organs, dorsal root ganglion (DRG).

Summary GJB2-GT is Now in IND/CTA Enabling Studies

THANK YOU

Laurent.desire@sensorion-pharma.com

Hearing Loss Innovation: Expanding Frontiers in Protection & Restoration April 26, 2025 - 11:30 am to 12:15 pm (UTC+1)

Moderator: Nawal Ouzren, Chief Executive Officer, Sensorion

- Protecting Hair Cells, Preserving Hearing: The Potential of SENS-401
 Prof. Yann Nguyen, Department of Otolaryngology-Head & Neck Surgery, Pitié-Salpêtrière Hospital, Paris, France
- From Bench to Bedside: The Journey of GJB2 & OTOF Gene Therapies for Children with Severe to Profound Hearing Loss
 - Advancing Gene Therapy for OTOF-Related Hearing Loss in Young Children
 Prof. Natalie Loundon, Pediatric Department of Otolaryngology-Head & Neck Surgery, Necker Enfants Malades Hospital, Paris, France
 - Developing Novel Gene Therapy for Hereditary Hearing Loss in Patients with GJB2 Mutations Laurent Désiré, PhD, Head of Preclinical Development, Sensorion
- Q&A Session & Conclusion: Nawal Ouzren, Chief Executive Officer, Sensorion

THANK YOU